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Dynamical structure-function
correlations provide robust and
generalizable signatures of
consciousness in humans
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Pablo Castro 1,2, Andrea Luppi 3,4, Enzo Tagliazucchi5,6,7, Yonatan S. Perl 5,6,8,9, Lorina Naci 10,11,
Adrian M. Owen12, Jacobo D. Sitt8, Alain Destexhe 1,13 & Rodrigo Cofré 1,13

Resting-state functional magnetic resonance imaging evolves through a repertoire of functional
connectivity patterns which might reflect ongoing cognition, as well as the contents of conscious
awareness. We investigated whether the dynamic exploration of these states can provide robust and
generalizable markers for the state of consciousness in human participants, across loss of
consciousness induced by general anaesthesia or slow wave sleep. By clustering transient states of
functional connectivity, we demonstrated that brain activity during unconsciousness is dominated by
a recurrent pattern primarily mediated by structural connectivity and with a reduced capacity to
transition to other patterns. Our results provide evidence supporting the pronounced differences
between conscious and unconscious brain states in terms of whole-brain dynamics; in particular, the
maintenance of rich brain dynamicsmeasured by entropy is a critical aspect of conscious awareness.
Collectively, our resultsmay have significant implications for our understanding of consciousness and
the neural basis of human awareness, as well as for the discovery of robust signatures of
consciousness that are generalizable among different brain conditions.

The identification of reliable markers for determining the presence or
absence of human consciousness from brain signals remains a major
unresolved problem in neuroscience1–9. The spontaneous dynamics of the
brain can be measured using resting-state functional magnetic resonance
imaging (rs-fMRI)10–14, consisting of the recording of functional magnetic
resonance imaging while no task is explicitly performed (i.e., during rest).
Using this approach, it has been shown that the brain exhibits dynamic
transitions between various transient configurations, each serving distinct
cognitive functions15–26. The nature of signals during the resting state sug-
gests that they might reflect complex neural processes related to ongoing
cognition and consciousness, prompting the search for signatures of

consciousness in the dynamics of spontaneous brain activity2,27–33. For
instance, differences in the sequences and prevalence of transient brain
states measured in macaques can distinguish between wakefulness and
general anaesthesia induced by propofol, ketamine, and sevoflurane29,34, a
finding thatwas replicated in human individuals suffering fromdisorders of
consciousness2,30,35.

One of the major obstacles behind the aforementioned challenge
consists of determining robust and generalizable markers of
consciousness36–38. In this context, robustness indicates markers that do not
require fine-tuning of parameters for each different dataset where they are
applied; moreover, robustness also stands for the independence of the
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consciousness state of the individuals. Generalizability refers to the capacity
to successfully detect consciousness markers in different datasets obtained
using heterogeneous acquisition parameters and under potentially diver-
gent experimental conditions. Currently, few papers explicitly address these
two requirements, especially in combination. This represents an important
obstacle, both for the study of fundamental principles underlying con-
sciousness, and for the translation to the clinics.

Here we focused on determining markers of consciousness based on
the dynamics of functional connectivity measured using rs-fMRI in human
participants, contrasting the awake state with general anaesthesia (intra-
venous propofol) and deep sleep, two different brain states characterised by
diminished or absent conscious awareness, and corresponding to two
datasets acquired by different research groups using different parameters of
data acquisition. Our results provide evidence that consciousness exhibits
specific features that are grounded in the temporal dynamics of ongoing
brain activity, which are common to different brain states, and robust
against changes in experimental acquisition protocols.

Methods
Before entering into the details, we describe here the general idea of the
methodology forwhich a summary canbe seen in Fig. 1.Wefirst consider in
both datasets blood-oxygen-level-dependent (BOLD) signals of healthy
volunteers. For each participant, we computed the Z-scored BOLD time

series (Fig. 1A). Secondly, we computed the Hilbert transform of the said
signals to extract the phase of the signal for each region of interest (ROI) at
each repetition time (TR) (Fig. 1B, C). We next compare every ROI pair of
these phases at every TR to determine brain regions’ synchronizations and
anti-synchronizations evolving through time (Fig. 1D). We did not use
Global Signal Regression, in neither of the two databases used, because it is
well-known that it can induce spurious anticorrelations,whichare known to
be relevant for tracking consciousness. Previous studies showed that the
global signal can contain information pertaining to pathological and
pharmacological perturbations of consciousness39.

Instantaneous phase
The analytic representation of a real-valued signal x(t) is a complex signal
~xðtÞ with the same Fourier transform as the real-valued signal, but defined
only for positive frequencies. The analytic signal can be built from the real-
valued signal using the Hilbert transform H:

~xðtÞ ¼ xðtÞ þ iH½xðtÞ�

Where i is the imaginary unit. The main advantages of using the analytic
signal are that, given some real-value data (for example BOLD signals), we
can determine two functions of time to better access meaningful properties
of the signal.We consider nowanarrowband signal that can bewritten as an

Fig. 1 | Phase-based dynamic functional patterns. A Left, In the general anesthesia
dataset, 16 healthy volunteers were scanned in three conditions (awake, G.A, and
recovery), and in the sleep database, 18 healthy volunteers were scanned in two
conditions (awake and N3 sleep). Right) Example of Z-scored filtered BOLD time
series for one participant of the anesthesia database in the awake condition, 250 time
points with a TR of 2 s. B Hilbert transform the z-scored BOLD signal of one ROI

into its time-varying amplitude A(t) (red) and the real part of the phase φ (green). In
blue, we recover the original z-scored BOLD signal as A(t)cos(φ). C Example of the
phase of each brain region at one TR. D Symmetric matrix of cosines of the phase
differences between all pairs of brain regions.EWeconcatenated the vectorized form
of the triangular superior of the phase difference matrices for all TR’s for all parti-
cipants, in all the conditions for both datasets separately.
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amplitude-modulated low-pass signalA(t) with carrier frequency expressed
by ϕðtÞ:

xðtÞ ¼ AðtÞcos½ϕðtÞ�:

If the Fourier transforms of A(t) and cos½ϕðtÞ� have separate supports, then
the analytic signal of a narrowband signal can be rewritten as the product of
two meaningful components

~xðtÞ ¼ AðtÞeiϕðtÞ:

Where A(t) is the instantaneous amplitude and ϕðtÞ is the instantaneous
phase obtained from the Hilbert transform H[x(t)].

The narrower the bandwidth of the signal of interest, the better the
Hilbert transform produces an analytic signal with a meaningful envelope
and phase40. Adopting a band-pass filtered version of the BOLD time series
improves the separation between the phase and envelope spectra.

TheBOLDsignalswerefirst z-scored, andsubsequently,wecomputed the
Hilbert transform (Fig. 1B), to obtain the phase of each signal at each TR, i.e.,
one time sample. Then, each instantaneous phase pattern was represented as a
vector withN elements (hereN= 68 or 90, since we used theDesikan–Killiany
andAALatlas, comprising thesenumberofROIs), each element represents the
projection of the phase (indicated by an arrowwith an angle in Fig. 1C) of each
brain area. Then, we built thematrix of phase coherence patterns (Fig. 1D) for
each TR, as well as for each participant and condition.

Phase-based dynamic functional coordination
To circumvent the issue of arbitrarily choosing the time window and
overlapping in capturing temporal oscillations employing a sliding-window
methodology12,29,41,42, the use of phase-based dynamic functional coordina-
tion was preferred13,43,44.

Analytic representations of signals were employed to derive a phase
signal corresponding to the BOLD time series. We computed the instan-
taneous phase ϕnðtÞ of the BOLD signals across all ROI n 2 f1; :::;Ng for
each TR t 2 f2; . . . ;T� 1g, the first and last TR’s of each fMRI scan were
excluded due to possible signal distortions induced by the Hilbert
transform45.

The instantaneousphasewas computedusingEuler’s formula from the
analytic signal, which was then “wrapped” within the range of −π to π,
facilitating the calculation of inter-ROI phase differences. To obtain a
whole-brain pattern of BOLD phase differences, the phase coherence
between areas k and j at each time t, PC(k, j, t), was estimated using the
pairwise phase coherence

PCðk; j; tÞ ¼ cosðϕkðtÞ � ϕjðtÞÞ:

When areas k and j have synchronized BOLD signals at time t, phase
coherence takes value 1 and, when areas k and j in anti-phase at time t phase
coherence is−1, all the rest of the cases lies in between the interval [−1,1].
This computation was repeated for all subjects. For each subject, the
resulting PC was a three-dimensional tensor with dimension N ×N × T,
where N is the number of regions in the parcellation considered (here 68
regions for general anaesthesia and90 regions for thedeep sleep) andT is the
number of TR in each fMRI session.

K-means clustering
To assess recurring coordination patterns among individuals in both
datasets, amultistepmethodologywas employed. First, by taking advantage
of the symmetry of the phase coherence matrices, we concatenated only the
vectorized triangular superior parts of the phase coherence matrices for
every time step together. Thus, the scanning sessions were transformed into
matrices, wherein one dimension represented instantaneous phase differ-
ences (feature space) and the other dimension represented time (see Fig. 1E)
for all participants and all conditions. The resultingmatrix was subjected to
the K-means clustering algorithm utilising the L2 distance metric, as

implemented in Python programming language (Scikit learn package). This
resulted in a discrete set of k coordination patterns and their corresponding
occurrence across time for each participant and each condition.

This process yielded k cluster centroids, which served as representa-
tives of the recurring coordination patterns, accompanied by a label indi-
cating the pattern to which each phase coherencematrix belongs according
to the K-Means algorithm. The number of clusters was determined from a
range from k = 3 to k = 10 (see Supplementary Figs.). Using the imple-
mentation of the K-means algorithm provided by Scikit Learn Python
library using the ‘k-means++’ initialization method, the clustering was
applied 200 times to avoid local minima using a random initialization of
centroid positions in each iteration. This means that at initialization, ran-
dom starting points were chosen from random samples of the coherence
feature space, and then the K-Means algorithm ran from there for a max-
imum of 300 iterations (default value of the algorithm implementation)
before stopping and re-initializing again, doing so 200 times.

Shannon entropy
Wemake the histogram associated to the frequency of visits to each pattern
for each participant in the different states. For each of the normalized
histogram of occurrence, we compute the Shannon entropy S as follows:

S ¼ �
Xk

i

Pilog2Pi ð1Þ

Where Pi is the probability (normalized histogram) of visit for each pattern
for each participant in each brain state.

Structure-function correlation
To investigate the dependence of brain dynamics on the state of con-
sciousness, we defined a measure of similarity between functional and
structural connectivity. We resorted to a widely used group estimate of
human anatomical connectivity, measured with the noninvasive technique
of diffusion tensor imaging (DTI). We computed the linear correlation
coefficient between the entries of both matrices (K-means centroids/ana-
tomical connectome) using the Pearson correlation. However, as shown in
Figure S5, our results generalise using non-parametric measures, such as
Spearman correlation or Kendall’s tau. This was performed for each phase-
based coordination pattern obtained using the K-means algorithm, andwas
denoted SFC (see Figs. 2 and 3). Last, for each participant, we computed the
linear slope coefficient of the relationship between the occurrence rate of
each centroid and the corresponding centroid/anatomical correlation.

Markov chains
For every time-point, theK-Means clustering assigns the index of the closest
centroid to the empirical phase coherence matrix, resulting in a chain of
indexes (integers, between 1 and k).We consider that sequence of centroids,
or “patterns visited” for each participant at each time, as a sequence of
random variables that jumps from one pattern to another pattern with a
certain probability given by the empirical frequencies in which these events
happen in the data. From this informationwebuilt aMarkovChain, as done
previously2.

More precisely, we counted the number of transitions between all pairs
of patterns, excluding self-transitions that correspond to remaining in the
same pattern, and normalized them to have a Markov transition matrix,
where the sum of the rows is equal to one. We only include transitions of
states of the same individual participant (see Figs. 4 and 5), meaning the last
state visited by a given patient and the first state visited by the next patient
cannot be counted as a transition of state.

In order to generalize the notion of uncertainty of a probability dis-
tribution given by its Shannon entropy, here we quantify the degree of
randomness or uncertainty there is in a sequence of random variables
characterised by a discrete Markov Chain. For each participant from their
Markov transition matrix, we obtained the stationary distribution μ
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represented as a row vector whose entries are probabilities, where μi cor-
responds to the stationary probability of observing pattern i (i.e., over the
long run, independent of the starting pattern, the proportion of time the
chain spends in state i is approximately μi for all i). The stationary prob-
ability is computed as follows: μP = μ, where P is the Markov transition
matrix.

Then, we calculate the entropy rate, or Kolmogorov–Sinai entropy, of
the Markov chains as follows:

SM ¼ �
X

ij

μiPijlog2Pij ð2Þ

wherePij corresponds to the transitionprobability frompattern i to pattern j.

Statistical methods
To assess the statistical significance of the differences between conditions in,
transition probabilities, slope’s coefficients, Shannon andMarkov entropies,
we performed a repeated measure ANOVA to know whether there are
statistically significant differences in the three-group comparison, followed
by post-hoc to statistically test pairs of conditions: two paired t test with
Bonferroni correction were performed between the awake and general
anaesthesia conditions, and between the recovery and general anaesthesia
ones. Similarly, for the sleep dataset, we performed one paired t test to

compare the N3-associated measurements and the awake ones. Details
about the statistical analyses are available in Tables S1 and S2 in the sup-
plementary material.

Then, in order to ensure that the transition probabilities differences
between conditions were indeed due to the specificity of the brain condi-
tions, we resorted to a bootstrap method for each subject. For every indi-
vidual, we randomly shuffled the indexes from the chain of states 10,000
times and computed as many transition matrices, thus breaking any tem-
poral dependencies of the transitions between specific states. We then
verified if the actual transitions did not belong to a confidence interval,
successivelydesignedbya confidence levelof 90%, 95%, and99%,definedby
the shuffled transitions matrices. Only transitions that passed at least the
90% confidence level were then considered.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
We investigated a dataset of general anaesthesia with the intravenous agent
propofol,where theBOLDsignals of 16participants during three conditions
(awake, general anaesthesia and recovery) and a dataset of deep sleep
consisting of 18 participants in two conditions (awake and N3 sleep). Both

Fig. 2 | Anesthesia increases structure-function coupling and decreases Shannon
entropy of distributions of occupancies of patterns. AMatrix representation of the
brain coordination patterns obtained for k = 5, which is the number of clusters that
maximizes the inter-pattern correlation variance (IPVC) for 3≤ k≤ 10, ordered by
increasing SFC (from left to right). Only the strongest elements were depicted on the
brain representation; in red, the positive coherence >+0.4, and in blue, the negative
coherence < −0.4. Right: (normalized) connectome using the Desikan–Killiany
parcellation represented in its matrix form. BDistribution of rates of occurrence for
each of the above brain patterns across all 3 conditions. Significance markers as
brackets indicate what conditions are compared, and on top, stars indicate the degree

of significance following the following p-value convention. **: between 0.01 and
0.001 ; *** : between 0.001 and 0.0001 ; ****: between 0.0001 and 0.00001. Right:
Rate of the brain patterns as a function of their SFC. A linear regression is fitted with
the mean rate of each brain pattern per condition. C IPVC as a function of the
number of patterns.D Shannon Entropy of the distribution of occurrences of the k
brain patterns 3≤ k≤ 10 for the three conditions. Across all values of k analyzed, the
Shannon entropy is lower under general anesthesia than inwakeful states.E Slopes of
the linear regression for 3≤ k ≤ 10, computed for each participant. All boxplots
extend from the first to the third quartile, with a line at the median and outliers
shown as grey diamonds.

https://doi.org/10.1038/s42003-024-06858-3 Article

Communications Biology |          (2024) 7:1224 4

www.nature.com/commsbio


datasets were obtained following the procedures indicated in detail in the
section “fMRI acquisition, experimental design and processing”.

Our phase-based analysis consistently unveiled discernible cerebral
patterns of brain dynamics, demonstrating robustness against the choice of
the number of clusters in the K-means algorithm (see Supplementary
Figs. S1 and S2).Notably, the brain pattern possessing the lowest correlation
with the connectome exhibited higher occurrence during the awake state in
comparison to participants undergeneral anaesthesia (Fig. 2B) andN3 sleep
(Fig. 3B). In stark contrast, a pattern indicative of heightened structure-
function correlation was more frequently observed in participants under
general anaesthesia and deep sleep, as opposed to those in the awake state
(see Figs. 2B and 3B).

To illustrate our results we choose the number of patterns k that max-
imized the inter-pattern correlation variance as in previous studies2, that turns
out to befive for the general anaesthesia and for deep sleep dataset. In Figs. 2A
and 3A,we illustrate thefive centroids in thematrix representation ordered by
increasing SFC (from left to right). Only the strongest elements in absolute
value were depicted on the brain graph representation, in red the positive
coherence >+0.4 and in blue the negative coherence <−0.4. We show five
patterns only for illustration, as shown throughout this article, our results are
robust independently of the choice of the number of clusters from three to ten.

The robustness of our results are in terms of the slope of structure-
function correlation, the Shannon and Markov entropies, which show dif-
ferences between states of consciousness (awake versus loss of

conscisouness) independently of the choice of the number of centroids in
the K-means algorithm. In particular, we show that the slope of structure-
function correlation with respect to the rate of occurrence of the patterns is
higher when consciousness is suppressed either by general anaesthesia or
deep sleep (Fig. 2B right and 4B right) independently of the choice of the
number of centroids (patterns) in the K-means algorithm (Figs. 2E and 3E).
We also show that the Shannon entropy computed from the normalized
histograms (probability distributions) of occurrences of each brain pattern
for each condition is higher in the awake and recovery conditions with
respect to general anaesthesia (Fig. 2D).A similar behavior is observed in the
deep sleep dataset, where the Shannon entropy is higher in the awake state
with respect to theN3 stage (Fig. 3D). In both datasets the results are robust
to the choice of the number of centroids (see Figs. 2–5). Furthermore, to
demonstrate the robustness of our findings across different analytical
approaches, we present in Figure S3 an increase in the slope of the SFC and a
reduction in Shannon Entropy in unconscious states using sliding-window
correlation in both datasets. Additionally, employing a pass-band filter of
0.04 to0.07 Hz yields similar results in bothdatasets as those obtainedwith a
broader filter (0.01–0.1 Hz), indicating that our results are robust to varia-
tions in bandwidth filtering (Fig. S4).

Finally, to provide a more comprehensive description of the dynamic
nature of pattern exploration, we computed amatrix for each participant in
each state of consciousness that detailed the probabilities of transitions
between patterns.We selected the statistically significant pattern transitions

Fig. 3 | Deep sleep increases structure-function coupling and decreases Shannon
entropy of distributions of occupancies of patterns. AMatrix representation of the
brain coordination patterns obtained for k = 5, which is the number of clusters that
maximizes the inter-pattern correlation variance for 3≤ k≤ 10, ordered by increasing
SFC (from left to right). Only the strongest elements were depicted on the brain
representation, in red the synchronizations >+0.4 and in blue anti-synchroniza-
tions <−0.4. Right: (normalized) connectome in the AAL90 parcellation (90 × 90).
B Distribution of rates of visit for each of the above brain patterns across the two
conditions (Awake, N3 sleep). Paired t test was used for comparison between con-
ditions. Rate of the brain patterns as a function of their structure-function correlation
(SFC). Significance markers as brackets indicate what conditions are compared, and

on top stars indicate the degree of significance following the following p value con-
vention. *: between 0.05 and 0.01 ; **: between 0.01 and 0.001. A linear regression is
fitted with the mean rate of each brain pattern per condition, showing that, during
deep sleep, the brain dynamics favor brain patterns with higher SFC unlike in the
wakeful condition.C Inter-pattern correlation variance (metric used to determine the
number of brain patterns). D Shannon Entropy of the distribution of rates of the k
brain patterns 3≤ k≤ 10 for two conditions. Across all values of k, the same relative
difference is found, during deep sleep, the Shannon entropy is lower than in wakeful
states. E Slopes of the linear regressions for 3≤ k≤ 10, computed for each participant,
showing a tendency for anatomically dictated dynamics in deep sleep. Paired t test
was used for comparison between conditions.
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obtained by comparing pairs of conditions for general anaesthesia and deep
sleep (Figs. 4 and 5). From the frequency of transitions between patterns we
estimatedMarkov chains for each condition, from which we computed the
Markov Entropy following Eq. (2).

To illustrate the transitions at the group level, we represent theMarkov
transitionmatrix corresponding to the average transitionmatrices across all
participants in the same condition.We observed higherMarkov entropy for
the conscious states (awake and recovery) with respect to general anaes-
thesia, and a similar result contrasting the awake state versus N3. As shown
in (Figs. 4B and 5B), both results generalize well with different choices of the
number of centroids.

Discussion
The present study delves into the generalization of results obtained
previously2 about thedynamics of thehumanbrain andhow theyare altered

in states of loss of consciousness, by employing two complementary datasets
of humansunder general anaesthesia andN3sleep.Theability to employ the
same method effectively across independent datasets in different scenarios
of low consciousness, emphasizes its reliability and underscores its potential
to yield consistent outcomes in other datasets. Such cross-applicability is
indicative of the robustness of the approach and the generalizability of the
results. Specifically, loss of consciousness—whether due to spontaneous
sleep, or inducedbygeneral anaesthesia—appears to reduce the repertoire of
dynamical states that the brain visits, with increased prevalence of the most
structurally coupled pattern.

Our results demonstrate that sustaining rich brain dynamics is
essential for consciousness and can serve as a biomarker for consciousness.
While the awake state exhibits a richer dynamic exploration of the func-
tional repertoire as exhibited by the Shannon entropy analyzing the histo-
grams (Figs. 2C and 3C) and the Markov entropy for the Markov chains

Fig. 4 | Propofol anesthesia decreases Markov entropy of transitions between
patterns and produces robust transition differences with the conscious states,
both awake and recovery. A Brain network representations of the five different
brain patterns and the statistical significance of the Markov transition probabilities
using a two-sample paired t test. Left: the awake condition is compared to general
anesthesia (and vice-versa). Right: The general anesthesia condition is compared to
the recovery condition. In blue are represented the transitions that were favoured in
the wakeful conditions (awake and recovery), and in red the ones favoured in the
unconscious condition. Only the transitions that passed the intermediate bootstrap

check (CI = 95%) were considered. Comparisons were made through paired t tests.
BMarkov transition probabilities for the three conditions computed for k = 5.
C Kolmgorov–Sinai entropy of the Markov chains obtained for 3≤ k≤ 10. The
Kolmgorov–Sinai entropy was consistently lower under general anesthesia. All
boxplots show median, 1st, and 3rd quartile of the distributions, and outliers are
diamonds. One-way repeated measure ANOVA was used to compute statistical
differences between the conditions and paired t tests as post-hoc analysis as shown
in Supplementary Tables.
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(Figs. 4B and 5B), the dynamic exploration is consistently reduced under
anaesthesia and N3 sleep for all the different choices for the number of
clusters. This result is well aligned with the entropic brain hypothesis46–48.
This diversity in state exploration is also related to recent results in the
mouse using calcium imaging under different drugs of general anaesthesia,
which show that under anaesthesia, the brain explores less states than the
awake brain49, and recent results of the structure-function interdependence
of themacaque brain under loss of consciousness induced by three different
anaesthetics (sevoflurane, propofol, ketamine) and restoration of con-
sciousness by deep brain stimulation (DBS)50. Furthermore, the more pre-
valent functional connectivity patterns during anaesthesia correlatewith the
anatomical connectivity, consistent with previous findings. As in previous
studies2, here we find that the slope of occurrence probability versus
structure-function correlation increases in the states of low consciousness.
Here, we show that those earlier results generalize to other mechanism of
loss of conscisouiness suchas general anaesthesia andN3sleep anddifferent
number of brain patterns.

A notable feature of the phase-based methodology is that it does not
need meticulous adjustment of the width of sliding windows. This auton-
omy from fine-tuning aspects diminishes the potential for bias introduced
by window length selection, highlighting again the robustness of the
methodology.

The sporadic emergence of patterns more present in states of low
consciousness during periods of conscious wakefulness, and vice-versa,

raises pertinent questions about the boundaries between these brain states.
The co-occurrence of seemingly contrasting states within the same indivi-
dual challenges conventional notions of discrete consciousness states. This
observation requires further investigation into the underlying mechanisms
that give rise to these sporadic occurrences and offers a unique perspective
on the dynamic nature of consciousness32,51–53. The alterations induced by
propofol in the body and the brain are not only reduced to consciousness, as
elucidated by ref. 54. Discrimination between changes stemming directly
from the loss of consciousness and those arising from ancillary effects of
propofol on cerebral processes remains challenging. A comparable chal-
lenge is encountered in the realmof sleep research, as underscored by ref. 55,
wherein deep sleep is acknowledged as more than mere unconsciousness.
Additionally, diminished vigilance is observed independently of attenuated
awareness56.

The question arises concerning the generalizability of the findings
through alternative brain recording techniques, bypassing the reliance on
functional Magnetic Resonance Imaging (fMRI). The prospect of employ-
ing different data sources, such as electroencephalography (EEG) or mag-
netoencephalography, to substantiate the identified consciousness states
introduces an avenue for expanding the horizon of the current methodol-
ogy, and enhances the robustness of the method and the findings25,57–59.
Generalisations of the presentmethod toEEGare under development60, and
may be of particular relevance, for example, for the study of unconscious-
ness induced by epileptic seizures. Alternatively, other species under general

Fig. 5 | Deep sleep decrease Markov entropy of transitions between patterns and
produce robust transition differences with the conscious states awake and
recovery. A Brain network representations of the four different brain patterns and
the statistical significance of the Markov transition probabilities using a t test. The
awake condition is compared to sleep (and vice-versa). In blue are represented the
transitions that were favored in the awake condition, and in orange the ones favored
in the deep sleep condition (N3). Again, only the transitions that passed the

intermediate bootstrap check (CI = 95%) are showed. B On the left are the Markov
transition probabilities for the two conditions computed for k = 5. C The entropy of
the Markov chains obtained for 3≤ k≤ 10 obtained using formula (2). The Markov
entropy was consistently lower under deep sleep N3 condition. All boxplots extend
from the first to the third quartile, with line at themedian and outliers shown as grey
diamonds.
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anaesthesia can be studied as has been done in the past with the sliding-
window technique29,34. Envisioning a broader context, the study prompts
consideration of consciousness-altering scenarios beyond those encoun-
tered within wakefulness or unconscious states.

However, it is important to acknowledge the limitations inherent in the
study. Important gaps remain in understanding how these dynamics are
influenced by brain structure and anaesthesia agents. For example, another
widely used anaesthetic, sevoflurane, has been shown to resemble propofol
in terms of its effects on brain dynamics, both in humans27,35,61 and
macaques34,62. Another important limitation is that we do not know which
changes are a consequence of propofol reducing consciousness, and which
appear because propofol does other things in the brain54. The same problem
is present for sleep, since deep sleep is not only loss of consciousness
(consciousness may be present as shown by Siclari, Tononi et al.55), and
reduced vigilance occurs independently of reduced awareness56. The gen-
erality of the method is also partly a weakness because, as can be seen in
Figs. 2 and 3, the patterns of general anaesthesia and deep sleep are quite
different. This may be because they are obtained from data obtained by
different research groups using different data acquisition parameters, with
different preprocessing protocols and different participants under different
conditions of loss of consciousness and different levels of global signal
contribution. In Supplementary Fig. S6, we illustrate that the sleep dataset
exhibits significantly higher levels of global signal compared to the anaes-
thesia dataset. There are multiple reasons why this may have come about.
Methodologically, the two datasets were denoised differently;
RETROICOR63 (sleep) versus aCompCor (anaesthesia). Although global
signal regression is not part of eithermethod, the two procedures may have
removed different amounts of global signal. Physiologically, the sleep
dataset participants may have been more drowsy even during the awake
scans, since they were scanned at 7 pm in the evening. This disparity par-
tially accounts for thepronounceddifferences between the centroidsderived
from the two datasets, as well as the presence of hyper-synchronized pat-
terns in the sleep dataset. These findings suggest that our approach remains
robust despite varying levels of global signal across different datasets.

Future studies could address this issue following the approach taken in
ref. 2, which uses data from different research groups and applies a unique
preprocessing method and parcellation. Despite these limitations, the
method appears to be robust and generalisable; the question then remains:
how broad is the generalisability of the present findings?

In conclusion, the present study highlights the generalisation and
robustness of previous results employing a uniform methodology across
varying states exhibited by different cohorts, in different consciousness
states. By leveraging the complementary nature of our results, we provide a
comprehensive characterization of the dynamic features of brain networks
and how consciousness reshapes the dynamics of the human brain and its
relation with the connectome. This study contributes to the broader dis-
course on consciousness and methodology, paving the way for future
investigations into the relationship of consciousness and dynamical brain
patterns and to identify potential markers that may be utilized in the future
to distinguish between conscious and unconscious states.

fMRI acquisition, experimental design and processing
Anaesthesia data: recruitment. The propofol data employed in this
study have been published before27,64–66. For clarity and consistency of
reporting, where applicable we use the same wording as our previous
studies. The propofol data were collected between May and November
2014 at the Robarts Research Institute in London, Ontario (Canada)27.
The study received ethical approval from the Health Sciences Research
Ethics Board and Psychology Research Ethics Board of Western Uni-
versity (Ontario, Canada). Healthy volunteers (n = 19) were recruited
(18–40 years; 13 males). Volunteers were right-handed, native English
speakers, and had no history of neurological disorders. In accordance
with relevant ethical guidelines, each volunteer provided written
informed consent, and received monetary compensation for their time.
Due to equipment malfunction or physiological impediments to

anaesthesia in the scanner, data from n = 3 participants (1 male) were
excluded from analyses, leaving a total n = 16 for analysis.

Anaesthesia data: procedure. Resting-state fMRI data were acquired at
different propofol levels: no sedation (Awake), and Deep anaesthesia
(corresponding to Ramsay score of 5). As previously reported27, for each
condition, fMRI acquisition began after two anaesthesiologists and one
anaesthesia nurse independently assessed Ramsay level in the scanning
room. The anaesthesiologists and the anaesthesia nurse could not be
blinded to experimental condition, since part of their role involved
determining the participants’ level of anaesthesia. Note that the Ramsay
score is designed for critical care patients, and therefore, participants did
not receive a score during the Awake condition before propofol admin-
istration; rather, they were required to be fully awake, alert, and com-
municating appropriately. To provide a further, independent evaluation
of participants’ level of responsiveness, they were asked to perform two
tasks: a test of verbal memory recall, and a computer-based auditory
target-detection task. Wakefulness was also monitored using an infrared
camera placed inside the scanner.

Propofol (a potent agonist of inhibitory GABA-A receptors67,68 was
administered intravenously using an AS50 auto syringe infusion pump
(Baxter Healthcare, Singapore); an effect-site/plasma steering algorithm
combinedwith the computer-controlled infusion pumpwas used to achieve
step-wise sedation increments, followed bymanual adjustments as required
to reach thedesired target concentrations of propofol according to theTIVA
Trainer (European Society for Intravenous Aneaesthesia, eurosiva.eu)
pharmacokinetic simulationprogram.This software also specified the blood
concentrations of propofol, following the Marsh 3-compartment model,
whichwere used as targets for the pharmacokineticmodel providing target-
controlled infusion. After an initial propofol target effect-site concentration
of 0.6 µgmL−1, concentration was gradually increased by increments of
0.3 µgmL−1, and Ramsay score was assessed after each increment: a further
increment occurred if the Ramsay score was lower than 5. The mean esti-
mated effect-site and plasma propofol concentrations were kept stable by
the pharmacokinetic model delivered via the TIVATrainer infusion pump.
Ramsay level 5 was achieved when participants stopped responding to
verbal commands,wereunable to engage in conversation, andwere rousable
only to physical stimulation. Once both anaesthesiologists and the anaes-
thesia nurse all agreed that Ramsay sedation level 5 had been reached, and
participants stopped responding toboth tasks, data acquisitionwas initiated.
The mean estimated effect-site propofol concentration was 2.48
(1.82–3.14) µgmL−1, and the mean estimated plasma propofol concentra-
tion was 2.68 (1.92–3.44) µgmL−1. Mean total mass of propofol adminis-
tered was 486.58 (373.30–599.86) mg. These values of variability are typical
for the pharmacokinetics and pharmacodynamics of propofol. Oxygen was
titrated to maintain SpO2 above 96%. At Ramsay 5 level, participants
remained capable of spontaneous cardiovascular function and ventilation.
However, the sedation procedure did not take place in a hospital setting;
therefore, intubation during scanning could not be used to ensure airway
security during scanning. Consequently, although two anaesthesiologists
closely monitored each participant, scanner time was minimised to ensure
return to normal breathing following deep sedation. No state changes or
movement were noted during the deep sedation scanning for any of the
participants included in the study. Written informed consent was asked to
all participants before the experiment. All ethical regulations relevant to
human research participants were followed.

Anaesthesia data: design. As previously reported27, once in the scanner
participants were instructed to relax with closed eyes, without falling
asleep. Resting-state functional MRI in the absence of any tasks was
acquired for 8 min for each participant. A further scan was also acquired
during auditory presentation of a plot-driven story through headphones
(5 min long). Participants were instructed to listen while keeping their
eyes closed. The present analysis focuses on the resting-state data only;
the story scan data have been published separately66.
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Anaesthesia data: fMRI data acquisition. As previously reported27,
MRI scanning was performed using a 3-Tesla Siemens Tim Trio scanner
(32-channel coil), and 256 functional volumes (echo-planar images, EPI)
were collected from each participant, with the following parameters:
slices = 33, with 25% inter-slice gap; resolution = 3 mm isotropic; TR =
2000 ms; TE = 30 ms; flip angle = 75 degrees; matrix size = 64 × 64. The
order of acquisition was interleaved, bottom-up. Anatomical scanning
was also performed, acquiring a high-resolution T1-weighted volume
(32-channel coil, 1 mm isotropic voxel size) with a 3D MPRAGE
sequence, using the following parameters: TA = 5min, TE = 4.25 ms,
240 × 256 matrix size, 9 degrees flip angle27.

Sleep data: recruitment. A total of 63 healthy subjects (36 females,
mean ± SD, 23.4 ± 3.3 years) were selected from a dataset previously
described in a sleep-related study by Tagliazucchi and Laufs69. Partici-
pants entered the scanner at 7 PM and were asked to relax, close their
eyes, and not fight the sleep onset. A total of 52 minutes of resting-state
activity were measured with a simultaneous combination of EEG and
fMRI. According to the rules of the American Academy of Sleep Medi-
cine, the polysomnography signals (including the scalp potentials mea-
sured with EEG) determine the classification of data into four stages
(wakefulness, N1, N2, and N3 sleep).

We selected 18 subjects with contiguous resting-state time series
of at least 200 volumes to perform our analysis. The local ethics com-
mittee approved the experimental protocol (Goethe-Universität Frank-
furt, Germany, protocol number: 305/07), and written informed consent
was asked to all participants before the experiment. The study was
conducted according to the Helsinki Declaration on ethical research. All
ethical regulations relevant to human research participants were
followed.

Sleep data: MRI data acquisition. MRI images were acquired on a
3-Tesla SiemensTrio scanner (Erlangen,Germany) and fMRI acquisition
parameters were 1505 volumes of T2-weighted EPIs, TR/TE = 2080 ms/
30 ms,matrix 64 × 64, voxel size 3 × 3 × 3 mm3, distance factor 50%; FOV
192 mm2. An optimized polysomnographic setting was employed (chin
and tibial EMG, ECG, EOGrecorded bipolarly [sampling rate 5 kHz, low-
pass filter 1 kHz] with 30 EEG channels recorded with FCz as the refer-
ence [sampling rate 5 kHz, low-pass filter 250 Hz]. Pulse oximetry and
respiration were recorded via sensors from the Trio [sampling rate
50 Hz]) and MR scanner-compatible devices (BrainAmp MR+, Brai-
nAmpExG; Brain Products, Gilching, Germany), facilitating sleep scor-
ing during fMRI acquisition. The method RETROICOR63, was uses to
model physiological noise (Respiration effects and cardiac pulsatility)
and use it to denoise the data.

Sleep data: brain parcellation AAL90 to extract BOLD time series
and filtering. To extract the time series of BOLD signals from each
participant in a coarse parcellation, we used the AAL90 parcellation with
90 brain areas anatomically defined in [25]. BOLD signals (empirical or
simulated) were filtered with a Butterworth (order 2) band-pass filter in
the 0.01–0.1 Hz frequency range.

DWI preprocessing and tractography anaesthesia dataset. The
diffusion data were preprocessed with MRtrix3 tools. This is the same
pipeline adopted in our previous work for clarity and consistency of
reporting, where applicable we use the same wording as in our previous
publications,70. After manually removing diffusion-weighted volumes
with substantial distortion, the pipeline involved the following steps: (i)
DWI data denoising by exploiting data redundancy in the PCA domain71

(dwidenoise command); (ii) Correction for distortions induced by eddy
currents and subject motion by registering all DWIs to b0, using FSL’s
eddy tool (through MRtrix3 dwipreproc command); (iii) rotation of the
diffusion gradient vectors to account for subject motion estimated by
eddy72 (iv) b1 field inhomogeneity correction for DWI volumes

(dwibiascorrect command); (v) generation of a brain mask through a
combination of MRtrix3 dwi2mask and FSL BET commands.

After preprocessing, theDTI datawere reconstructed using themodel-
free q-space diffeomorphic reconstruction algorithm (QSDR) implemented
in DSI Studio (www.dsi-studio.labsolver.org), following our previous
work70. The use of QSDR is desirable when investigating group differences
because this algorithm preserves the continuity of fiber geometry for sub-
sequent tracking since it reconstructs the distribution of the density of
diffusing water in standard space. QSDR initially reconstructs DWI data in
native space, and subsequently computes values of quantitative anisotropy
(QA) in each voxel, based on which DSI Studio performs a nonlinear warp
from native space to a template QA volume in Montreal Neurological
Institute (MNI) space. Once inMNI standard space, spin density functions
are reconstructed, with a mean diffusion distance of 1.25mm with three
fiber orientations per voxel73.

Finally, fiber tracking was carried out using DSI Studio’s own FACT
deterministic tractography algorithm, requesting 1000,000 streamlines
according to widely adopted parameters: angular cutoff = 55°, step size =
1.0 mm, tract length between 10mm (minimum) and 400mm (max-
imum), no spin density function smoothing, andQA threshold determined
by DWI signal in the cerebrospinal fluid. Streamlines were automatically
rejected if they presented improper termination locations, based on a white
matter mask automatically generated by applying a default anisotropy
threshold of 0.6Otsu’s threshold to the anisotropy values of the spin density
function.

Brain parcellation. For both BOLD and DWI data, brains were parcel-
lated into 68 cortical ROIs, according to the Desikan-Killiany anatomical
atlas74.

DWI preprocessing and tractography Sleep dataset. The data was
obtained from 16 healthy right-handed participants (11 men and five
women, mean age: 24.75 ± 2.54). Data were collected at Aarhus University,
Denmark. Participants with psychiatric or neurologic disorders (or a his-
tory thereof) were excluded from participation in this study. The MRI data
(structural MRI, DTI) were collected in one session on a 3 T Siemens Skyra
scanner at Aarhus University, Denmark. The parameters for the structural
MRI T1 scan were as follows: voxel size of 1mm3; reconstructedmatrix size
256 × 256; echo time (TE) of 3.8ms and TR of 2300ms.

The DTI data were collected using TR = 9000ms, TE = 84ms, flip
angle = 90°, reconstructed matrix size of 106 × 106, voxel size of
1.98 × 1.98mm with slice thickness of 2mm and a bandwidth of 1745Hz/
Px. Furthermore, the data were collected with 62 optimal nonlinear diffu-
sion gradient directions at b = 1500 s/mm2. Approximately one
nondiffusion-weighted image (DWI; b = 0) per 10 diffusion-weighted
images was acquired. Additionally, the DTI images were collected with
different phase encoding directions. One set was collected using anterior to
posterior phase encoding direction and the second acquisition was per-
formed in the opposite direction. For the parcellation, we used the AAL
template to parcellate the entire brain into 90 regions (76 cortical regions,
adding 14 subcortical regions, AAL90). The parcellation consists of regions
distributed in each hemisphere75. The linear registration tool from the FSL
toolbox (www.fmrib.ox.ac.uk/fsl, FMRIB76) was used to coregister the EPI
image to the T1-weighted structural image. The T1-weighted image was
coregistered to the T1 template of ICBM152 in MNI space. The resulting
transformations were concatenated and inversed and further applied to
warp the AAL template from MNI space to the EPI native space, where
interpolation using nearest-neighbor method ensured that the discrete
labeling values were preserved. Thus the brain parcellationswere conducted
in each individual’s native space. We generated the SC maps for each par-
ticipant using the DTI data acquired. We processed the two datasets
acquired (each with different phase encoding to optimize signal in difficult
regions). The construction of these SC maps or structural brain networks
consisted of a three-step process. First, the regions of the whole-brain net-
work were defined using the AAL template as used in the functional MRI
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data. Second, the connections between nodes in the whole-brain network
(i.e., edges) were estimated using probabilistic tractography. Third, data
were averaged across participants. Similar to the functional data, we applied
the AAL90 template using the FLIRT tool from the FSL toolbox (www.
fmrib.ox.ac.uk/fsl, FMRIB) to coregister the b0 image in diffusion MRI
space to the T1-weighted structural image and then to the T1 template of
ICBM152 in MNI space77. The two transformation matrices from these
coregistration steps were concatenated and inversed to subsequently be
applied to warp the AAL templates from MNI space to the diffusion MRI
native space.

Brain parcellation. For both BOLD and DWI data, brains were parcel-
lated into 90 ROIs, according to the AAL anatomical atlas75.

Data availability
Thedataset of general anaesthesia is openly available and canbe found in the
following link https://openneuro.org/datasets/ds003171/versions/1.0.078.
The dataset of sleep is available on request from nztglzcch@gmail.com.

Code availability
All analyses were carried out using custom scripts written in Python and
openly available https://github.com/Krigsa/phase_coherence_kmeans79.
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